Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present initial findings from the ongoing Community Stress Drop Validation Study to compare spectral stress-drop estimates for earthquakes in the 2019 Ridgecrest, California, sequence. This study uses a unified dataset to independently estimate earthquake source parameters through various methods. Stress drop, which denotes the change in average shear stress along a fault during earthquake rupture, is a critical parameter in earthquake science, impacting ground motion, rupture simulation, and source physics. Spectral stress drop is commonly derived by fitting the amplitude-spectrum shape, but estimates can vary substantially across studies for individual earthquakes. Sponsored jointly by the U.S. Geological Survey and the Statewide (previously, Southern) California Earthquake Center our community study aims to elucidate sources of variability and uncertainty in earthquake spectral stress-drop estimates through quantitative comparison of submitted results from independent analyses. The dataset includes nearly 13,000 earthquakes ranging from M 1 to 7 during a two-week period of the 2019 Ridgecrest sequence, recorded within a 1° radius. In this article, we report on 56 unique submissions received from 20 different groups, detailing spectral corner frequencies (or source durations), moment magnitudes, and estimated spectral stress drops. Methods employed encompass spectral ratio analysis, spectral decomposition and inversion, finite-fault modeling, ground-motion-based approaches, and combined methods. Initial analysis reveals significant scatter across submitted spectral stress drops spanning over six orders of magnitude. However, we can identify between-method trends and offsets within the data to mitigate this variability. Averaging submissions for a prioritized subset of 56 events shows reduced variability of spectral stress drop, indicating overall consistency in recovered spectral stress-drop values.more » « lessFree, publicly-accessible full text available May 2, 2026
-
One of most universal statistical properties of earthquakes is the tendency to cluster in space and time. Yet while clustering is pervasive, individual earthquake sequences can vary markedly in duration, spatial extent, and time evolution. In July 2014, a prolific earthquake sequence initiated within the Sheldon Wildlife Refuge in northwest Nevada, USA. The sequence produced 26 M4 earthquakes and several hundred M3s, with no clear mainshock or obvious driving force. Here we combine a suite of seismological analysis techniques to better characterize this unusual earthquake sequence. High-precision relocations reveal a clear, east dipping normal fault as the dominant structure that intersects with a secondary, subvertical cross fault. Seismicity occurs in burst of activity along these two structures before eventually transitioning to shallower structures to the east. Inversion of hundreds of moment tensors constrain the overall normal faulting stress regime. Source spectral analysis suggests that the stress drops and rupture properties of these events are typical for tectonic earthquakes in the western US. While regional station coverage is sparse in this remote study region, the timely installation of a temporary seismometer allows us to detect nearly 70,000 earthquakes over a 40-month time period when the seismic activity is highest. Such immense productivity is difficult to reconcile with current understanding of crustal deformation in the region and may be facilitated by local hydrothermal processes and earthquake triggering at the transitional intersection of subparallel fault systems.more » « less
An official website of the United States government
